ON ERGODIC BEHAVIOR OF p-ADIC DYNAMICAL SYSTEMS
نویسندگان
چکیده
منابع مشابه
On Ergodic Behavior of P-adic Dynamical Systems *
Monomial mappings, x 7→ xn, are topologically transitive and ergodic with respect to Haar measure on the unit circle in the complex plane. In this paper we obtain an anologous result for monomial dynamical systems over p−adic numbers. The process is, however, not straightforward. The result will depend on the natural number n. Moreover, in the p−adic case we never have ergodicity on the unit ci...
متن کاملP-adic Continued Fractions and a P-adic Behavior of Quasi-periodic Dynamical Systems
In this paper we introduce p-adic continued fractions and its application to quasi-periodic dynamical systems. Investigating the recurrent properties of its orbits, we use the lattice theory, which has direct applications to cryptography. At last we show some numerical calculations of p-adic continued fractions and Gauss reduction algorithm by using the open source software Sage.
متن کاملSOME ERGODIC PROPERTIES OF HYPER MV {ALGEBRA DYNAMICAL SYSTEMS
This paper provides a review on major ergodic features of semi-independent hyper MV {algebra dynamical systems. Theorems are presentedto make contribution to calculate the entropy. Particularly, it is proved that thetotal entropy of those semi-independent hyper MV {algebra dynamical systemsthat have a generator can be calculated with respect to their generator ratherthan considering all the par...
متن کاملp-Adic and Adelic Rational Dynamical Systems
In the framework of adelic approach we consider real and p-adic properties of dynamical system given by linear fractional map f(x) = (ax + b)/(cx + d), where a, b, c, and d are rational numbers. In particular, we investigate behavior of this adelic dynamical system when fixed points are rational. It is shown that any of rational fixed points is p-adic indifferent for all but a finite set of pri...
متن کاملAutomata as $p$-adic Dynamical Systems
The automaton transformation of infinite words over alphabet Fp = {0, 1, . . . , p− 1}, where p is a prime number, coincide with the continuous transformation (with respect to the p-adic metric) of a ring Zp of p-adic integers. The objects of the study are non-Archimedean dynamical systems generated by automata mappings on the space Zp. Measure-preservation (with the respect to the Haar measure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Infinite Dimensional Analysis, Quantum Probability and Related Topics
سال: 2001
ISSN: 0219-0257,1793-6306
DOI: 10.1142/s0219025701000632